Imagine a bendable tablet computer or an electronic newspaper that could fold to fit in a pocket.
The technology for these devices may not be so far off. Northwestern University researchers have recently developed a graphene-based ink that is highly conductive and tolerant to bending, and they have used it to inkjet-print graphene patterns that could be used for extremely detailed, conductive electrodes.
The resulting patterns are 250 times more conductive than previous attempts to print graphene-based electronic patterns and could be a step toward low-cost, foldable electronics.
A paper describing the research, "Inkjet Printing of High Conductivity, Flexible Graphene Patterns," was published April 8 in the Journal of Physical Chemistry Letters.
"Graphene has a unique combination of properties that is ideal for next-generation electronics, including high electrical conductivity, mechanical flexibility, and chemical stability," said Mark Hersam, professor of materials science and engineering at Northwestern's McCormick School of Engineering and Applied Science. "By formulating an inkjet-printable ink based on graphene, we now have an inexpensive and scalable path for exploiting these properties in real-world technologies."
Comentarios